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Abstract. When using the Born—Oppenheimer approximation for molecular systems, one
encounters a quantum mechanical Hamiltonian for the electrons that depends on several
parameters that describe the positions of the nuclei. As these parameters are varied, the spectrum
of the electron Hamiltonian may vary. In particular, discrete eigenvalues may approach very
close to one another at ‘avoided crossings’ of the electronic energy levels. We give a definition of
an avoided crossing and classify generic avoided crossings of minimal multiplicity eigenvalues.
There are six distinct types that depend on the dimension of the nuclear-configuration space and
on the symmetries of the electron Hamiltonian function.

1. Introduction

In various situations, one encounters quantum mechanical Hamiltoh{@)sthat depend

on parameterX < R". For example, in the Born—Oppenheimer approximation of molecular
physics, the electron Hamiltoniar(X) depends on the nuclear-configuration parameters

In such situations, the spectrum ifX) may depend orX in a complicated way.

In this paper we classify and study the local structure of ‘avoided crossings’ of discrete
eigenvalues of quantum mechanical Hamiltonian functions. These occur at values of the
parametersX where two discrete eigenvaluds,(X) and Eg(X) of h(X) approach very
close to one another, but remain a positive distance apart.

Avoided crossings are of interest because they may dramatically affect the physics of
the situation. For example, in the time-dependent Born—Oppenheimer approximation the
adiabatic approximation for the electrons can break down at an avoided crossing [3, 4], and
this breakdown can provide a mechanism for certain chemical reactions to occur.

The first rigorous results on the structure of crossings and avoided crossings were
published in 1929 by Wigner and von Neumann [8]. They were motivated by examples
computed by Hund. They first showed that the space of n Hermitian matrices has
dimensionn?, and the subset that has a degenerate pair of eigenvalues has dimension
n?—3. They also showed that the real symmetric » matrices have dimensio%‘n(n -1,
while those with a degenerate pair of eigenvalues have dimeéai(m— 1) — 2. Thus, one
should ‘in general’ not expect level crossings of Hermitian matrix-valued functions unless
one has at least three parameters to adjust, and one should not expect crossings in the real
symmetric case unless one has at least two parameters. They also commented that in the
presence of symmetries, eigenvalues associated with different symmetry classes could ‘in
general’ cross one another.
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Wigner and von Neumann also discussed the dependence of eigenvalues and
eigenfunctions of 2 2 matricesH + «V on the single parametar. They assumed the
eigenvaluest: (k) and Ex(«k) have the same derivative at= 0, and thatE;(0) = £ — ¢
and E»(0) = E + €. They observed that the graphs of the eigenvalues were hyperbolas,
and they discussed the behaviour of the eigenvectors. Their results are special cases of the
general discussion presented below.

There is no universal definition of what is meant by an avoided crossing. In this paper
we define one to be a ‘detuned crossing’, i.e. a situation where an actual eigenvalue crossing
has been dismantled by a perturbation. We assume the Hamiltonian depends on the nuclear
parametersX and an additional ‘detuning’ paramet&r such thatz (X, 0) has a crossing,
but thati (X, §) does not for smals > 0. Our precise definition is the following:

Definition. Supposeh(X, ) is a family of self-adjoint operators with a fixed domain
D in a Hilbert SpaceH, for X € Q and$ € [0,«), where Q is an open subset of
R". Suppose that the resolvent b{X, §) is a C? function of X and§ as an operator
from H to D. Supposei(X, §) has two eigenvalueg 4(X, §) and Ez(X, ) that depend
continuously onX and § and are isolated from the rest of the spectrumhoX, §).
Assumel’ = {X : E4(X,0) = Ep(X,0)} is a single point or non-empty connected
proper submanifold of2, but that for allX € Q, E4(X,8) # Eg(X,8) whens > 0.
Then we sayi(X, §) has an avoided crossing @h

In this definition, we have allowed the possibility thét is a manifold. The
added generality has essentially no cost, and manifolds can arise in applications because
of symmetries of some systems. For example, in the absence of external fields,
electron Hamiltonians in molecular systems undergo similarity transformations as nuclear
configurations are translated or rotated. The invariance of the eigenvalues under these
transformations forces avoided crossings to occur on manifolds of positive dimension.

The motivation for this paper is the study of molecular propagation through avoided
crossings [3,4]. In that situation, the direction of propagation of the nuclei through an
avoided crossing defines a special direction in the nuclear configuration space. Generically
that direction has a non-trivial component in the hyperplane perpendiculfir ab any
particular point. Throughout the paper, we choose Ihecoordinate direction to be
aligned with that component. The particular normal forms we obtain depend on having
this distinguishedX; direction.

Our classification depends on the codimensiolr @nd the symmetries d¢f(X, §). The
codimension ofl" ¢ R”" is n — m, wherem is the dimension of’, i.e. it is the minimum
number of parameters that must be altered to move a generic poiit oéarI” ontoI'.

Every Hamiltonian functiork (X, §) has a symmetry grou@, which is the set of al(X, §)-
independent unitary and anti-unitary operators that commute igith §). An anti-unitary
operator is complex conjugation composed with a unitary operator, and such operators have
the feature of reversing time.

In this paper, we consider only avoided crossings of energy lefel6X, §) and
Es(X,8) that are generic and have the minimal multiplicity allowed by the symmetry
group. If G contains no anti-unitary operators, then each discrete energy #v&ls) of
h(X, 8) is associated with an irreducible representationGof In this case, the minimal
multiplicity allowed is 1.

If G contains anti-unitary operators, then each discrete energy#els) of h(X, §) is
associated with an irreducible corepresentatio ¢5, 7]. In this case, the unitary elements
of G form a subgroupH of index 2, and each irreducible corepresentation belongs to one



Avoided crossings 371

of three types [5, 7].

A corepresentatior/ of G is of type | if its restriction Uy to H is an irreducible
representation off. In this case, minimal multiplicity energy levels afX, §) again have
multiplicity 1.

A corepresentatiorU of G is of type Il if Uy is a direct sum of two equivalent
irreducible representations d@¥, i.e. Uy = D & D. Furthermore, for any anti-unitary

D(h) 0
0 D(h))’
0 —-K

Ui = <K 0 ) and U(Kh) = U(K)U(h), for all h € H. Here K is an anti-

unitary operator that satisfigs? = —D(K?) andK D(K~*hK) K~ = D(h) forall h € H.
In this case, minimal multiplicity energy levels have multiplicity 2.
A corepresentatior/ of G is of type Il if Uy is a direct sum of two inequivalent
irreducible representations df, i.e. Uy = D & C. Furthermore, for any anti-unitary
D) O
0 C(h))’
0 —-K

U = (D(ICZ)K—l 0 ) and U(Kh) = UK)U((h), for all h € H. Here

K € G, the corepresentatio can be cast in the fornU(h) = <

K € G, the corepresentatioy can be cast in the fornU(h) = <

K : Hp — Hc is an anti-unitary operator that satisfi&sD (X hK)K~1 = D(h) for
all h € H. In this case, minimal multiplicity energy levels have multiplicity 2.

Suppose two energy levelg 4(X,0) and Ez(X,0) have a level crossing and are
associated with inequivalent representations or corepresentations. Without loss of generality,
assume this crossing occurs atXat= 0. From the classification theory of level crossings
[1,2], we see thatE 4(X, 0) and Ez(X, 0) satisfy no special conditions except that their
values coincide atX = 0. Thus, the gradienVx|x.s—©.0(EA(X,8) — Eg(X,9)) is
non-zero under generic conditions. If we restrictto any line £ through the origin
that is not perpendicular to this gradient, we can apply the implicit-function theorem to
conclude that for smalb, there is a uniqueX(§) near the origin onZ, that satisfies
EA(X(5),8) — Eg(X(8),8) = 0. Thus, for smalls, the perturbed level& (X, §) and
Es(X, §) still cross one another, and an avoided crossing does not arise.

Throughout the rest of this paper, we therefore restrict our attention to the situations
whereE 4(X, §) andEz(X, §) correspond to equivalent representations or corepresentations.

2. Type 1 avoided crossings

Type 1 avoided crossings are the simplest avoided crossings. They are characterized by
codimensioql’) = 1 and the multiplicity ofE 4(X, §) and Ez(X, §) being 1.

Supposd” has codimension 1 ankl4(X, §) and Eg(X, §) are multiplicity 1 levels with
equivalent representations or corepresentations. Note that because of the multiplicity, any
corepresentations that are present here must thgpefl Since the two levels are isolated
from the rest of the spectrum, we can construct the rank 2 spectral projection onto the
spectral subspace corresponding to both eigenvalues by contour integration of the resolvent
of h(X, d):

P(X,8) = 2% /(z —h(X,8) tdz
Y

wherey surrounds the two eigenvalues.
Without loss of generality, assumecOR” is an arbitrary generic point df. Since the
resolvent ofi(X, ) is C?, and we are studying generic situatiodishas a well defined
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tangent plane ak = 0. Choose a coordinate system in which #ig X3, ... X,, axes are
tangent tol" at X = 0 and theX; axis is perpendicular td' at X = 0.
Choose{yr1, ¥2} to be an orthonormal basis of the rangeR(0, 0). Define

P(X, 8)Yn
X, 8) =T
V0 = e (X, vl

and let P1(X, ) be the orthogonal projection onif; (X, §). The projectionsP (X, §) and
P1(X, §) commute with one another. Define

(1= Pu(X,8)P(X, &)
(1= Pu(X, 8) P(X, )Yl

Then{y1(X, §), ¥2(X, 8§)} is an orthonormal basis for the range BtX, §) for small || X ||
and smalls.

The range ofP (X, §) is an invariant subspace far(X, §), and in the basi$y1(X, 3),
Ya(X, 8)}, the restriction ofz(X, §) to the range ofP (X, d) is given by a 2x 2 matrix
h1(X,8). We define

Va(X,8) =

ho(X, 8) = ha(X, 8) — 3(Ea(X, 8) + Eg(X, 8))I

wherel is the 2x 2 identity matrix. Therhi,(X, §) is a 2x 2 traceless self-adjoint matrix-
valued function. Sincé 4(0, 0) = E(0, 0), h»(0, 0) is the zero matrix.

By the assumed smoothness of the resolvernit(af, §), ho(X, 8) is C? in X ands for
| X] ands small. Thus, for small|| X | ands, by first-order Taylor series,

ha(X,8) = BX1 + C8 4+ O(X? + 87

where B and C are 2x 2 traceless self-adjoint matrices. By the spectral theorem, we
can make anX andé independent change of basis so tlkats diagonal. Since we are
studying generic avoided crossings, we assubnés non-zero. Thus, in the new basis,
{p1(X, 8), p2(X, 8)}, ha(X, 8) is represented by

_ bj_ 0 b2 Cz+id2 2 2
h3(X,8)—(O _bl>xl+<cz_id2 b )8+O(X +6).

By replacingg(X, 8) by €’¢.(X, 8) for appropriated, we can arrange for the imaginary
terms in the above expression to vanish. Thus, in a final bagi¥,, §) is represented by

(b1 X1+ b8 €26 2, 2
m(x,a)_( o _blxl_b25)+0(x +87). )

From this representation, we see that

EA(X,8) — Eg(X, 8) = 2/ (b1X1 + b28)2 + (¢28)% + O(X? + §2)
and thatk1(X, §) minus half its trace (which depends smoothly nand §) is unitarily
equivalent to the normal forrh,(X, §).

3. Type 2 avoided crossings

Type 2 avoided crossings are very similar to type 1, except that the eigenvalues are
degenerate. Type 2 avoided crossings are characterized by having codiniEnsiori
and the multiplicity of E 4(X, §) and Ez(X, §) being 2.
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Type 2 avoided crossings may occur when the eigenvalues are associateagpeith
or type lll corepresentations. We begin our discussion with the simpler casdypkdll
corepresentation. In that case, we construct the rank 4 projeBtiaghé) onto the spectral
subspace fon(X, §) that corresponds to both eigenvalues by contour integration as for
type 1 avoided crossings. The corepresentation decompodés=a® @ C, whereC and
D are inequivalent representations Hf Assume Oc R”" is an arbitrary point of", and
choose coordinateX 1, X», ..., X, as in the discussion of type 1 avoided crossings.
Arbitrarily choose two orthonormal vector, and v, that lie in the range o (0, 0)
and in the carrier subspace for tlie representation of the subgroup of the symmetry
groupG. Define

P(X,8)yn
1P (X, 8)ynl

and letP1(X, 8) be the orthogonal projection onif (X, §). Then define

v1(X, 0) =

(11— Pi(X,8)P(X, 8y
(1= Pu(X, 8) P(X, )yl

V2(X,8) =

For small|X| and §, these two vectors form an orthonormal basis for the intersection of
the range ofP (X, §) and the carrier subspace for tlierepresentation oH{. We then let
Y3(X, 8) = Kyn(X,8) and ¥4 (X, §) = Kya(X, 8), whereC is the anti-unitary operator
mentioned in the description @ype Il corepresentations. These last two vectors form an
orthonormal basis for the intersection of the rangeP@X, §) and the carrier subspace for
the C representation oH. The four vectors form an orthonormal basis for the range of
P(X, ).

In this basis, the restriction of

hi(X,8) =h(X,8) — %(EA(X, 8) + Eg(X, )1

to the range of? (X, §) is represented by a self-adjoint traceless#matrix-valued function
ho(X, 8) whose entries ar€? functions that vanish foxX, §) = (0,0). Sinceh(X, 8)
commutes with the projections onto the carrier subspaces fo€ thad D representations
and with the action ofC, 4,(X, §) commutes with

1 0 0 O
01 00O
0 0 0O
0 0 0O
and
0 0 € 0
0 0 O . .
10 0 ol (conjugation
01 0 O

where D(K?) is a multiplication by &. It follows that/s,(X, §) must have the form

a(X, ) B(X,8) +iy(X,$é) 0 0
B(X,8) —iy(X,$) —a(X,d) 0 0
0 0 a(X, ) B(X,8) —iy(X,$)

0 0 B(X,8) +iy(X,9d) —a(X,d)
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We expandiz(X, 8) in its first order Taylor series
ha(X,8) = BX1 + C8 4+ O(X? + 8%

where B and C are 4x 4 traceless self-adjoint matrices. By the spectral theorem, we
can make anX and$ independent change of basis so tiBats diagonal. Since we are
studying generic avoided crossings, we assubné non-zero. Thus, in the new basis,
{p1(X, 8), p2(X, 3), Pp3(X, 8), pa(X, 8)}, h2(X, 8) is represented by

b1 0 0 0 b, ¢ +ido 0 0
. 0 —bl 0 0 Co — idz —bz 0 0
hXD=10o o 5 o |[M2T] "0 0 by ca—ids
0 0 0 —-b; 0 0 o +ido —by

+0(X? + 87).

By replacing¢»(X, 8) by é’¢.(X, §) and ¢4(X, 8) by e ¥p4(X, 8) for appropriatet, we
can arrange for the imaginary terms in the above expression to vanish. Thus, in a final
basis,h,(X, §) is represented by

b1 X1+ b6 C26 0 0
_ G268 —b1X1 — by6 0 0 > w2
ha(X,8) = 0 0 b1X1 + b &8 + O(X* + 89).
0 0 C28 —b1X1 — byé
(2

From this representation, we see that

EA(X,8) — Eg(X,8) = 2/ (b1X1 + b28)2 + (¢28)2 + O(X? + §2)

and thatz; (X, §) minus a quarter its trace (which depends smoothlyaands) is unitarily
equivalent to the normal formy(X, §).

If the corepresentation itype Il instead oftype lll, the analysis is more complicated,
but ultimately leads to the same normal form (2).

When the corepresentation is tfpe Il, we choose a unit vectof; in the range of
P(0, 0), and defineyr, = Kyr1. Thenvr, is a unit vector orthogonal t¢1. We choose)s
to be any unit vector in the range &f(0, 0) that is orthogonal to botki; andy,, and let
Y4 = Kz, The four vectors then constitute an orthonormal basis of the ran@g®10).

We define

P(X, 8)yn
ViD= X syl
and lety»(X, §) = Ky1(X, 8). We letP1 2(X, §) be the orthogonal projection oni (X, &)
andv(X, 8), and define
(1— P15(X,68))P(X,8)Ys
(1= Pr2(X, 8)P(X, 8)Ysll
Finally, we letvy4(X, §) = Ky3(X, §). For small|X| and$§, these four vectors form an

orthonormal basis for the range #f(X, §).
In this basis, the restriction of

V3(X,0) =

h1(X, 8) = h(X, 8) — 3(Ea(X, 8) + Eg(X, 8))



Avoided crossings 375

to the range ofP (X, §) is represented by a self-adjoint tracelessmatrix-valued function
hs(X, 8) whose entries ar€? functions that vanish foxX, §) = (0,0). Sincek(X, 8)
commutes with the action df, h5(X, §) commutes with

0 -1 0 O
1 0 0 O : .
0 0 0 -1 - (conjugation.
0O 0 1 O
It follows that h5(X, §) must have the form
a(X, ) 0 B(X,8) +iy(X,8) €(X,8)+it(X,39)
0 a(X,6) —e(X,8) +i¢(X,8) BX,8) —iy(X,$)
B(X,8) —iy(X,8) —e(X,8)—ic(X,9) —a(X, ) 0
€(X,8) —ic(X,8) BX,0)+iy(X,9) 0 —a(X,6)

We expandis(X, ) in its first order Taylor series
hs(X,8) = BX1+ C5 4+ O(X? + 5§?)

where B and C are 4x 4 traceless self-adjoint matrices. By the spectral theorem, we
can make anX and$ independent change of basis so tiBats diagonal. Since we are
studying generic avoided crossings, we assubné non-zero. Thus, in the new basis,
{p1(X, 8), p2(X, 3), p3(X, 8), pa(X, 8)}, hs(X, 8) is represented by

by 0 O 0
0 »nh O 0

wxo=|o 3 L o |x
0O O 0 —-h
b, 0 cot+idy ex+ifs
0 by —ex+ifa c2—idp 2, 2
+ Cz—idz —ez—ifz —bz 0 5+O(X +5 )
ey — ifz o +ido 0 —by

By analogy with the construction for type 1 avoided crossings, we now alter the basis
to force certain coeficients to vanish. Instead of multiplying some basis vectors by phases,
we apply a unitary operator in a two-dimensional subspace. We define a unitary operator
on C? by

U= 1 <62+id2 €2+if2>
\/c§+d22+e§+f22 —ex+1fo c2—ldy

and replaceps(X, §) and ¢4(X, §) by U¢ps(X, §) andU¢p4(X, 8), respectively. In the new
basis,hs5(X, §) is represented by

b1X1 4+ bé 0 C26 0
_ 0 b1 X1+ bod 0 ) 2 2
h7(X,8) = ) 0 by X1bs 0 + O(X* + 6°).
0 528 0 _blxl - b28

Then, by interchanging the second and third basis vectors, we obtain a final basis in which
hs(X, 8) is represented by

b1X1+ bé C28 0 0
B 58 —byiXy— by 0 0 -
he(X, 8) = 0 0 biX1 + bad &8 + 0" +6%

0 0 28 —b1X1 — b2é
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which has the same form as (2).
So, in either case, we see that

EA(X,8) — Eg(X,8) = 2/ (b1X1 + b28)2 + (¢28)2 + O(X? + §2)

and thathy(X, §) minus a quarter of its trace (which depends smoothlyXomnd §) is
unitarily equivalent to the normal form (2).

4. Type 3 avoided crossings

Type 3 avoided crossings are characterized by having codiméngioa 2 and the
multiplicity of E4(X, §) and Eg(X, §) being 1.

We claim that type 3 avoided crossings do not generically occur if the symmetry group
contains anti-unitary operators.

To prove this claim, suppose the symmetry group does contain anti-unitary operators,
and that the multiplicities of the eigenvalues are 1. Assume, without loss of generality
that 0e R” is a generic point of". Then the corepresentation must betyge |, and the
level crossing ofi(X, §) at (X,8) = (0,0) must be oftype | in the classification given
in [1, 2]. It follows [1, 2] that the restriction of(X, §) to the spectral subspace associated
with E4(X, §) and Ez(X, §) is unitarily equivalent to a real symmetricx22 matrix

(a(X, 8) + B(X,8) y(X, ) )
v(X, ) a(X,d) — B(X,9)

whose eigenvalues cross if and onlifX, §) = y (X, §) = 0. Generically the two gradients
Vx| x.6=0,08(X, 8) and Vx|x.s=0.0 ¥ (X, §) are non-zero. IX is restricted to a plan®
that is not perpendicular to either of these gradients, then we can apply the implicit-function
theorem to conclude that for small] there is a uniquexX (§) near the origin orP, that
satisfiesg(X (8),8) = y(X(8),8) = 0. Thus, for smalls, the perturbed level& 4(X, §)
and Ez(X, §) still cross one another, and an avoided crossing does not arise. This proves
the claim.

Without loss of generality, assume thateOR” is a generic point of". Sincel has
a well defined tangent plane & = 0, we can choose an orthogonal coordinate system
in which the X; and X, coordinate axes are perpendicularltoand the X3, X4, ..., X,
axes are tangent t6. We further assume that thé;-axis is in the distinguished direction
perpendicular td" at the origin, as mentioned in the introduction.

We choosey1(X, §) andy,(X, §), and definei,(X, §) as in our discussion of type 1
avoided crossings. We then expalgd X, §) in its first-order Taylor series:

ha(X,8) = BX1 + CX, + D8 + O(X? + 8%

where B, C, and D are traceless 2 2 self-adjoint matrices. By performing axi and$
independent change of basis frofn(X, §) and ¥»(X, §) to some¢p;(X, §) and ¢2(X, §),
we may forceB to be diagonal. In the new basig; (X, §) is represented by

b1 X1+ baXo + b3é c2Xo + idy Xy + 38 + 1d3d

h3(X,8) = <c2X2 — id2X2 + c36 — id35 —b1X1 — boXo — b38

) + O(X? + 8?).
We choosef) so thatc, +id, = ¢,€?, whereé, is real and positive. We then replagg(X, §)
by d¢-(X, 8). In the resulting basigi»(X, §) is represented by

biX1+boXo+bsd  GoXp+ a8 +idsd

ha(X, 8) = ( GoXo+ 838 —ids8  —b1X1 — bpXo — b3l

) + O(X? + 6% 3)
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whereés + ids = e (¢, + id,). From this we see that

EA(X,8) — Ep(X,8) = 2\/(le1 + b2X2 + b3d)? + (€2X2 + 38)% + (dad)? + O(X? + 67)

and thath; (X, §) minus half of its trace (which depends smoothly ¥rands§) is unitarily
equivalent to the normal form (3).

5. Type 4 avoided crossings

Type 4 avoided crossings are characterized by having codimégngiog 2 and the
multiplicity of E4(X, é) and Eg(X, §) being 2.

In this situation, our minimal multiplicity assumption dictates that the symmetry group
G contains anti-unitary operators, and that the corepresentation for these eigenvalues be of
type Il or type lll. In either case, we choose a coordinate systenXfais in our discussion
of type 3 avoided crossings.

If E4(X,d) and Eg(X, §) are associated with gype Ill corepresentation, we choose
basis vectors as in our discussion of type 2 avoided crossings. The resulting matrix
ha(X,8) has the same form as in the discussion of type 2 avoided crossings. We
expand this matrix-valued function in its first-order Taylor series and diagonalize the
matrix that is the coefficient of;. At that point h2(X, §) is represented in a basis
{#1(X, 8), g2(X, 9), $3(X, 8), pa(X, 8)} by the matrix

b1Xq +byXp +b3d X +idpXp + c38 +idgs 0 0
h (X (S) _ cpXp —idpXp + c38 —id3s —b1X1 —bpXp — b3s 0 0
34, = 0 0 b1Xq +bpX +b3d cpXp —idpXp + 30 — id3d
0 0 cpXg +idyXy +c38 +idgs  —b1Xq —bpXp —b3s
2 2
+0(X“ 4 69).

We then choosé as in the discussion of type 3 avoided crossings and reglace, 5) by
€99,(X, 8) andg4(X, 8) by e9p4(X, 8). In this final basisf,(X, §) is represented by the
normal form

b1X1 +bpXp +b38  GpXo+igd+idgs 0 0
_ GpXp+i38 —idgs  —byXq —bpXg —b3s 0 0 2 2
ha(X,8) = < 0 0 b1X1+bpXo+b3s  EpXp+ 38 —idas ) + O(X* +5%) (4)
0 0 GpXp +igb+idgd  —byXq —bpXp —b3gd

wherecs + ids = e (¢, + idy). As in the case of a type 3 avoided crossing,

EA(X,8) — Eg(X,8) = 2\/(le1 +boXp + b38)2 + (E2X2 + ¢38)2 + (d38)? + O(X? + 82).

When the corepresentation is ®fpe I, the situation is more complicated. We
again mimic the discussion of type 2 avoided crossings to choose an appropriate basis;
we expand in first-order Taylor series; and we diagonalize the matrix that isXthe
coefficient in that Taylor series. We then find that(X, §) is represented in a basis
{p1(X, 8), p2(X, 8), ¢p3(X, 8), d4(X, 8)} by the matrixhs(X, §) that is given below.

b1Xq +bpXp +b38 0 (cp +idp)Xp + (c3 +1d3)8  (ep+1f2)Xp + (e3 +1/3)8
h (X 3) _ _ 0 i b1 X1 +bpXp +b3o (—ep +if)Xp + (—e3 +1f3)8 (cp —id)Xp + (c3 — id3)3
5{4, =\ (p-idp)Xp+(c3—id3)s (—ep —ifp)Xp + (—e3 —if3)8 b1 X1 — bpXp — b38 0
(g —ifp)Xp+(e3—if3)8  (cg+idg)Xg + (c3 +id3)s 0 b1 X1 —bpXp —b3s

+0(X2 + 8.
We next make a similarity transformation of the form
g o g
hG(Xv 3) = 00 h5(X7 ) 00
oo U 0 0

-1

Uz
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whereU; and U, are certain constant 2 2 unitary matrices. There is a well known 2-to-
1 Lie-group homomorphism [6] fron§U (2) x SU(2) onto SO (4), (U1, Uz) —> Oy, u,,
which satisfies

E4id  e+if\ _ c+id e+if\, -1
(—é—i—if 5—i&)‘U1<—e+if c—id>U2

(¢ d é fy=(c d e [)Oy.u,.

Since the homomorphism is ont®0 (4), we can choosé/; and U, so that the transpose
of Oy, y, satisfies

if and only if

c2 c3 ¢2 C3
or | @ a|_[o &
U1.Uz ey e3 0 O
2 f3 0 0

with & > 0 andds > 0. (Since all rotations arise, we simply choose one which maps the
first vector into the positiveX; direction and the second vector into thig—X, plane with
positive second component.) By doing this, we see kéX, §) is represented by

b1Xq +bpXo +b3é 0 GpXp + 38 +idgs o
_ 0 b1 Xq +bpXo+b38 0 ipXg + g —idgd 2 2
he(X, &) = )Xo + g8 — idas 0 —by X1 — bpXp — bgs + O(X* + §9).
0 GpXp + i3 +idgs 0 —b1Xq —bpXp — b3s

Then, by interchanging the second and third basis vectors, we again obtain the normal-form
matrix i4(X, 8) given by (4), and

EA(X,8) — Ep(X,8) = 2\/(b1X1 4 ba X3 + b38)2 4 (CaXo + E38)% + (d38)?
+0(X2% + 8%).

6. Type 5 avoided crossings

Type 5 avoided crossings are characterized by having codime&nsien3.

We claim that when the codimensidh > 3, generic avoided crossings cannot arise
unless theG contains anti-unitary operators and the corepresentation for the eigenvalues is
of type II. This forces the minimal multiplicity of the eigenvalues to be 2.

To prove this claim, we assume thatE@R” is a generic point of* and examine several
cases:

Case 1.Suppose the corepresentation 05 (X, §) and Ez(X, 8) is of type L In this case

we repeat the implicit-function theorem argument from the beginning of our discussion of
type 3 avoided crossings to see that crossings are stable under generic perturbations, and
that no avoided crossing arises.

Case 2.SupposeG contains no anti-unitary operators. Then the level crossing(&f, §)

at (X, 8) = (0, 0) must be of type B in the classification given in [1,2]. Furthermore, the
restriction of (X, §) to the spectral subspace associated V#th(X, §) and Ez(X, ) is
unitarily equivalent to a X 2 matrix

aX,)+B(X, 8 yX,d)+iwX,9)
y(X,8) —iw(X,8) «(X,8) —B(X,9)
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whose eigenvalues cross if and onlydfX,8) = y(X,8) = w(X,8) = 0. Generically

the three gradienf§’x|(X,5)=(0,0)/3(X, 8), Vx|(x,5):(0,0))/(x, ), ande|(X’,g):(o’0)a)(X, §) are
non-zero. IfX is restricted to a three-dimensional subsp&cthat is not perpendicular to

any of these gradients, then we can apply the implicit-function theorem to conclude that for
small$, there is a uniqué& (8) near the origin inS, that satisfie® (X (8), §) = y(X(3), 8) =
w(X(8),8) = 0. Thus, for smalb, the perturbed level& 4(X, §) and Ez(X, §) still cross

one another, and an avoided crossing does not arise.

Case 3.Suppose the corepresentation ) (X, §) and Ez(X, 8) is of type Ill. Then the
level crossing ofi(X, ) at (X, 8) = (0,0) must be of type K in the classification given
in [1,2]. Furthermore, the restriction d@f(X, §) to the spectral subspace associated with
E 4(X,d) and Ep(X, §) is unitarily equivalent to a 4« 4 matrix

a(X,8) + B(X,8) y(X,8) +iw(X,s) 0 0

y(X,8) —iw(X,8) aX,8) — B(X,8) 0 0
0 0 a(X,8) + B(X,8) y(X,8) —iw(X,$s)
0 0 y(X,8) +iw(X,8) a(X,8) — B(X,5)

whose eigenvalues cross if and onlygtX, §) = y(X, ) = w(X, ) = 0. The implicit-
function theorem argument from case 2 now shows that generic crossings are stable and
that no avoided crossing arises.

Since the only other possibility is that contains anti-unitary operators and the
corepresentation for the eigenvalues isygfe Il, this proves our claim.

The analysis of type 5 avoided crossings is very similar to the analysis of type 4 avoided
crossings when the relevant corepresentatior @ of type II. Without loss of generality,
assume that & R” is a generic point of". Sincel" has a well defined tangent plane
at X = 0, we can choose an orthogonal coordinate system in whiclXtheX,, and X3
coordinate axes are perpendicularft@and theXy, Xs, ..., X, axes are tangent tB. We
further assume that th&; is the distinguished direction perpendicularltoat the origin,
as mentioned in the introduction.

SinceE 4(X, §) and Ex(X, 8) are associated with tgpe Il corepresentation, we choose
basis vectors as in our discussion of type 2 avoided crossings. The resulting matrix
h2(X,8) has the same form as in the discussion of type 2 avoided crossings. We
expand this matrix-valued function in its first-order Taylor series and diagonalize the
matrix that is the coefficient ofX;. At that point ho(X, §) is represented in a basis
{01(X, 8), p2(X, 8), p3(X, 8), p4(X, 8)} by the matrixkz(X, §) given below.

h3(X, §)

3 3 3
I:Zhj)(/-}+[745 0 I:Z(rj+id/)xj}+(c4+id4)5 [Z(e/+\f’/-)Xj:|+(P4+i_f4)5
j=1 Jj=2 j=2
3 3 3
0 {ijxj%m [Z(—I»j+|[;)xj}+(—()4+|/4)a [Z(L‘j—ld/)Xj]+(c4—ld4)é
_ j= j= i=2
= 3 3 3
[Zzu-,- —izl,-)X,-]+(c4—izl4)6 [ZZH,-4/,-))(‘,]“7«44/;1)5 —[Xibfxf]—h46 0
j= j= j=
3 3
[Ezw/ —wf;)xj]+<e4—if4)a [E;c/ +\dj)X/:|+(r4+id4)6 0 *[;”j"/} by
+O(X? + 8%).
We again make a similarity transformation of the form
00 0 0\-!
U U

. =[o o © Olnxo|,

oo U oo U
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whereU; and U, are certain constant 2 2 unitary matrices. We use the same Lie-group
homomorphism as in the type 4 avoided-crossing case, but this time cbpose e SO (4)
so that

c2 3 ¢4 C2 C3 (4

oT dy d3 dy| _[ O d3 da
Unlz2 | ¢ e3 ea 0 0 é4
f2 f3 Ja 0 0 O

with & > 0, d3 > 0, andé, > 0. By doing this, we see thab(X, §) is represented by the
matrix h4(X, 8) given below.

ha(X, 8)
b1Xq +bpXp +b3X3 +bgs 0 GgXg + (63 +1d3g) X3 + (&4 +idg)s 48
_ 0 b1Xq +bpXp +b3X3 + byl —é48 EgXp + (63 —idg) X3 + (¢4 —idg)s
GpXo + (¢3 —idg) X3 + (¢4 — idg)s —&48 —b1X1 — bpXp — b3 X3 —bys 0
o4 GpXp + (3 +1d3) X3 + (¢4 +idg)s 0 —b1 X1 — bpXp — b3 X3 — byd
+0(X2 + §?).

In the above expression we can further arrangecfoe 0 by rotating theX, and X3
coordinate axes (recall that we assume Xheaxis points in a distinguished direction). To

2
see that this can always be done, note that O is equivalent to havin 8 orthogonal
0
E~3 c2 c3
ds o . . | da ds
to o | This, in turn, is equivalent to havin . orthogonal to .
2 3
0/ f2 o
Rotations of theX, and X3 axes have the effect of multiplying
C2 C3
7| ds
€y €3
f2 f3

on the right by a rotation
cosy —sind
sing cosfd |-
Thus, we need only show thétcan be chosen so that

cost \ . —siné
V4 <sin9) is orthogonal toZ ( cosd ) .

However,Z" Z is a real symmetric 2 2 matrix, whose eigenvectors have the fo(ncé?nsg)

—sind .
and( cosd ) One then easily computes that

(5 )7 Ceos)) = ((5) 772 (asr )
-{(5)- (eos))

=0
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wherep is an eigenvalue of"Z. For this choice ob, we have the desired orthogonality.
Thus, we have the final normal-form matrix(X, §) given by equation (5).

hs(X, 8)
by X1 +bpXp + b3 X3+ byd 0 EpXp +id3Xg + (4 +1dg)s 248
_ 0 b1X1 +bpXp + b3 X3+ bgd —48 EpXp —id3Xg + (¢4 — idg)s
GgXg —id3X3 + (¢4 —idg)s Y . —b1 X1 —bpXp — b3X3 — bad 0
40 EpXp +id3Xg + (é4 +1dy)s 0 —b1Xq —bpXp — b3Xg — bgd

+O(X? + 82). (5)
From this expression, one sees that the difference between the eigenvalues is

E (X, 0) — Ep(X, )

— 261X + baXa + bsXa+ bad)? + (E2Xz + 648 + (daXa + dad)? + (@a5)?
+0O(X? + 87).

7. Type 6 avoided crossings

Type 6 avoided crossings are characterized by having codiméngien4. As in the type 5
situation, the symmetry grou must contain anti-unitary operators and the corepresentation
for the eigenvalues must be type Il. The minimal multiplicity of the eigenvalues is 2.

The analysis of this situation is completely analogous to the type 5 avoided-crossing
case. The only changes result from our having four releXanbordinates instead of three.
In this situation, the matrixs(X, §) is presented below.

h3(X, 8)
4 4 4
[ijxj}rbsls 0 I:Z((j+i4/)xj}+(¢>5+id5)& [Z(g,+\fj)xf]+(g5+i,f5)a
j=1 j=2 j=2
4 4 4
0 [Zhjxj}msa I:Z(—ej+ifj)Xj}+(—r5+if5)S I:Z(rj—id/-)Xj]Jr(rs—ids)E
— j=1 Jj=2 j=2
- 4 4
[Z(cj 7|dj)xj] + (cg —idg)s [Z(ﬂy 7|/j)xj] + (—e5 —if5)s {ijxj] — bgé 0
j=2 j=2 j=1
4 4
[Z(e‘f—if/)xi]Jr(es—ifya {Za‘f+w11,)xf]+((-5+i115)5 0 —[ijx/}—bsé
j=2 j=2 =1
+0(X2 + §%).
In analogy with the type 5 discussion, we may rotate X3¢ X3, and X4 coordinate
Cc2 C3 Cca
. d> ds dy .
axes in order to force the vecto se o and . to be mutually perpendicular.
2 3 4
. \Nf2/ \fz fa
After doing so, we choose unitary matrics and U, so that
c2 €3 ¢4 Cs C2 C3 C4 Cs
oT dy d3 dy ds _ 0 d3 dy ds
Un.Uz ey e3 e4 e5 0 0 e 55
fa fz fa fs 0 0 0 fs

Because of the mutual orthogonality arranged by the rotation of coordinatecaxés,and
d4 must also vanish.
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Thus, we obtain the normal form matri (X, §) in equation (6).

4
[Zlhjxj} + b 0 EpXp +id3X3 + (¢5 +ids)s é4Xg+ (@5 +if5)8
j=
4 ~ ~ ~
0 [ijxj]+b58 —i4Xg+ (=e5 +if5)8  pXp —id3X3+ (75 —idg)s
— j=1
ha(X, 8) = _ _ . 4
GgXg —idgXg+ (i5 —idg)s  —éqX4+ (—5 —if5)s 7[ > z;,»xj] — bgs 0
j=1
: : : 4
i4X4+ (@5 —if5)8 ipXp +id3X3 + (5 +idg)s 0 ,[ > ob; x,] — bgb
j=1
2 2
+0O(X? + 82). (6)

From this representation, we can then compute the difference between the eigenvalues:

4 2
EA(X,8) — Eg(X,8) = 2{ <[ Z bjxj] + b56> + (E2X2 + E58)% + (d3X3 + ds8)?
j=1

1/2
+(24X4 + e58)% + <f56>2} +O(X? + §2).

8. Completion of the classification

So far we have classified all possible generic, minimal multiplicity avoided crossings that
have codimensiait’) < 4. We now conclude our classification theory by showing that no
generic, minimal multiplicity avoided crossings can occur when codime(iSjon 5.

Assume codimensid@i) > 5. As argued in the type 5 situation, the symmetry group
G must contain anti-unitary operators and the corepresentation for the eigenvalues must
be of type Il. Under these circumstances, the level crossing(&f, §) must be of type/
in the classification given in [1,2]. Furthermore, the restrictiom X, §) to the spectral
subspace associated wity (X, §) and Ez(X, §) is unitarily equivalent to a 4« 4 matrix
that is an(X, §)-dependent multiple of the identity plus a matrix whose entries are linear
combinations of five real-valued functions Bfands. E (X, §) = Eg(X, d) if and only if
all five of these functions simultaneously vanish.

We now mimic our earlier implicit-function theorem arguments to see that on generic
five-dimensional subspaces through any generic poirit,ahere are points<(§) nearl"
for small 8, such that these five functions simultaneously vanisfxas), 3).

Thus, when codimensigh) > 5, generic, minimal multiplicity level crossings are
stable under generic perturbations and do not give rise to avoided crossings.

9. Concluding remark

One might wonder if it is possible to simplify our normal-form matrices further by somehow
forcing additional parameters to vanish. To see that this cannot be done, one needs only
count the number of independent parameters that describe each type of avoided crossing
and see that it is the same as the number of parameters in our normal forms.

In type 1 avoided crossings, for example, one parameter is the minimum eigenvalue
gap divided bys. A second independent parameter is the scaling factor for the leading-
order dependence anof the location inX of closest approach of the eigenvalues. A third
independent parameter is a scaling factor for Xhedependence of the eigenvalues. So, the
normal form cannot contain fewer than three parameters. Our form comtaihg, andc,.
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Similar counting can be done for the other types of avoided crossings. A listing of
independent parameters can be obtained by considering: (1) the number of parameters to
specify theX; scale factor and the location of the minimum eigenvalue gap, (2) rotations of
principal axes of the Hessianat the minimum eigenvalue gap, (3) magnitudes of the Hessian
eigenvalues, and (4) the minimum gap divided dyIn the type 5 and 6 situations, we
reduced the number of parameters by 1 and 3, respectively, by rotating cgrtaias. In
each case, we obtain the number of parameters that appear in our normal forms.

For type 6 avoided crossings, one obtains:

4 for the X4 scale factor and location of the minimum,

6 for principal axis rotations of the Hessian (disi (4) = 6),

4 for Hessian eigenvalues,

1 for the § scale parameter,

—3 for rotating X,, X3, and X4 coordinates.

This yields 12 parameters, which is the number of free parameters in equation (6),
figure 6.
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