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Abstract. When using the Born–Oppenheimer approximation for molecular systems, one
encounters a quantum mechanical Hamiltonian for the electrons that depends on several
parameters that describe the positions of the nuclei. As these parameters are varied, the spectrum
of the electron Hamiltonian may vary. In particular, discrete eigenvalues may approach very
close to one another at ‘avoided crossings’ of the electronic energy levels. We give a definition of
an avoided crossing and classify generic avoided crossings of minimal multiplicity eigenvalues.
There are six distinct types that depend on the dimension of the nuclear-configuration space and
on the symmetries of the electron Hamiltonian function.

1. Introduction

In various situations, one encounters quantum mechanical Hamiltoniansh(X) that depend
on parametersX ∈ Rn. For example, in the Born–Oppenheimer approximation of molecular
physics, the electron Hamiltonianh(X) depends on the nuclear-configuration parametersX.
In such situations, the spectrum ofh(X) may depend onX in a complicated way.

In this paper we classify and study the local structure of ‘avoided crossings’ of discrete
eigenvalues of quantum mechanical Hamiltonian functions. These occur at values of the
parametersX where two discrete eigenvaluesEA(X) andEB(X) of h(X) approach very
close to one another, but remain a positive distance apart.

Avoided crossings are of interest because they may dramatically affect the physics of
the situation. For example, in the time-dependent Born–Oppenheimer approximation the
adiabatic approximation for the electrons can break down at an avoided crossing [3, 4], and
this breakdown can provide a mechanism for certain chemical reactions to occur.

The first rigorous results on the structure of crossings and avoided crossings were
published in 1929 by Wigner and von Neumann [8]. They were motivated by examples
computed by Hund. They first showed that the space ofn × n Hermitian matrices has
dimensionn2, and the subset that has a degenerate pair of eigenvalues has dimension
n2−3. They also showed that the real symmetricn×n matrices have dimension12n(n−1),
while those with a degenerate pair of eigenvalues have dimension1

2n(n−1)−2. Thus, one
should ‘in general’ not expect level crossings of Hermitian matrix-valued functions unless
one has at least three parameters to adjust, and one should not expect crossings in the real
symmetric case unless one has at least two parameters. They also commented that in the
presence of symmetries, eigenvalues associated with different symmetry classes could ‘in
general’ cross one another.
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Wigner and von Neumann also discussed the dependence of eigenvalues and
eigenfunctions of 2× 2 matricesH + κV on the single parameterκ. They assumed the
eigenvaluesE1(κ) andE2(κ) have the same derivative atκ = 0, and thatE1(0) = E − ε
andE2(0) = E + ε. They observed that the graphs of the eigenvalues were hyperbolas,
and they discussed the behaviour of the eigenvectors. Their results are special cases of the
general discussion presented below.

There is no universal definition of what is meant by an avoided crossing. In this paper
we define one to be a ‘detuned crossing’, i.e. a situation where an actual eigenvalue crossing
has been dismantled by a perturbation. We assume the Hamiltonian depends on the nuclear
parametersX and an additional ‘detuning’ parameterδ, such thath(X, 0) has a crossing,
but thath(X, δ) does not for smallδ > 0. Our precise definition is the following:

Definition. Supposeh(X, δ) is a family of self-adjoint operators with a fixed domain
D in a Hilbert SpaceH, for X ∈ � and δ ∈ [0, α), where� is an open subset of
Rn. Suppose that the resolvent ofh(X, δ) is a C2 function of X and δ as an operator
from H to D. Supposeh(X, δ) has two eigenvaluesEA(X, δ) andEB(X, δ) that depend
continuously onX and δ and are isolated from the rest of the spectrum ofh(X, δ).
Assume0 = {X : EA(X, 0) = EB(X, 0) } is a single point or non-empty connected
proper submanifold of�, but that for allX ∈ �, EA(X, δ) 6= EB(X, δ) when δ > 0.
Then we sayh(X, δ) has an avoided crossing on0.

In this definition, we have allowed the possibility that0 is a manifold. The
added generality has essentially no cost, and manifolds can arise in applications because
of symmetries of some systems. For example, in the absence of external fields,
electron Hamiltonians in molecular systems undergo similarity transformations as nuclear
configurations are translated or rotated. The invariance of the eigenvalues under these
transformations forces avoided crossings to occur on manifolds of positive dimension.

The motivation for this paper is the study of molecular propagation through avoided
crossings [3, 4]. In that situation, the direction of propagation of the nuclei through an
avoided crossing defines a special direction in the nuclear configuration space. Generically
that direction has a non-trivial component in the hyperplane perpendicular to0 at any
particular point. Throughout the paper, we choose theX1 coordinate direction to be
aligned with that component. The particular normal forms we obtain depend on having
this distinguishedX1 direction.

Our classification depends on the codimension of0 and the symmetries ofh(X, δ). The
codimension of0 ⊂ Rn is n − m, wherem is the dimension of0, i.e. it is the minimum
number of parameters that must be altered to move a generic point ofRn near0 onto 0.
Every Hamiltonian functionh(X, δ) has a symmetry groupG, which is the set of all(X, δ)-
independent unitary and anti-unitary operators that commute withh(X, δ). An anti-unitary
operator is complex conjugation composed with a unitary operator, and such operators have
the feature of reversing time.

In this paper, we consider only avoided crossings of energy levelsEA(X, δ) and
EB(X, δ) that are generic and have the minimal multiplicity allowed by the symmetry
group. IfG contains no anti-unitary operators, then each discrete energy levelE(X, δ) of
h(X, δ) is associated with an irreducible representation ofG. In this case, the minimal
multiplicity allowed is 1.

If G contains anti-unitary operators, then each discrete energy levelE(X, δ) of h(X, δ) is
associated with an irreducible corepresentation ofG [5, 7]. In this case, the unitary elements
of G form a subgroupH of index 2, and each irreducible corepresentation belongs to one
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of three types [5, 7].
A corepresentationU of G is of type I if its restriction UH to H is an irreducible

representation ofH . In this case, minimal multiplicity energy levels ofh(X, δ) again have
multiplicity 1.

A corepresentationU of G is of type II if UH is a direct sum of two equivalent
irreducible representations ofH , i.e. UH = D ⊕ D. Furthermore, for any anti-unitary

K ∈ G, the corepresentationU can be cast in the formU(h) =
(
D(h) 0

0 D(h)

)
,

U(K) =
(

0 −K
K 0

)
, andU(Kh) = U(K)U(h), for all h ∈ H . HereK is an anti-

unitary operator that satisfiesK2 = −D(K2) andK D(K−1hK)K−1 = D(h) for all h ∈ H .
In this case, minimal multiplicity energy levels have multiplicity 2.

A corepresentationU of G is of type III if UH is a direct sum of two inequivalent
irreducible representations ofH , i.e. UH = D ⊕ C. Furthermore, for any anti-unitary

K ∈ G, the corepresentationU can be cast in the formU(h) =
(
D(h) 0

0 C(h)

)
,

U(K) =
(

0 −K
D(K2)K−1 0

)
, and U(Kh) = U(K)U(h), for all h ∈ H . Here

K : HD → HC is an anti-unitary operator that satisfiesK D(K−1hK)K−1 = D(h) for
all h ∈ H . In this case, minimal multiplicity energy levels have multiplicity 2.

Suppose two energy levelsEA(X, 0) and EB(X, 0) have a level crossing and are
associated with inequivalent representations or corepresentations. Without loss of generality,
assume this crossing occurs at atX = 0. From the classification theory of level crossings
[1, 2], we see thatEA(X, 0) andEB(X, 0) satisfy no special conditions except that their
values coincide atX = 0. Thus, the gradient∇X|(X,δ)=(0,0)(EA(X, δ) − EB(X, δ)) is
non-zero under generic conditions. If we restrictX to any line L through the origin
that is not perpendicular to this gradient, we can apply the implicit-function theorem to
conclude that for smallδ, there is a uniqueX(δ) near the origin onL, that satisfies
EA(X(δ), δ) − EB(X(δ), δ) = 0. Thus, for smallδ, the perturbed levelsEA(X, δ) and
EB(X, δ) still cross one another, and an avoided crossing does not arise.

Throughout the rest of this paper, we therefore restrict our attention to the situations
whereEA(X, δ) andEB(X, δ) correspond to equivalent representations or corepresentations.

2. Type 1 avoided crossings

Type 1 avoided crossings are the simplest avoided crossings. They are characterized by
codimension(0) = 1 and the multiplicity ofEA(X, δ) andEB(X, δ) being 1.

Suppose0 has codimension 1 andEA(X, δ) andEB(X, δ) are multiplicity 1 levels with
equivalent representations or corepresentations. Note that because of the multiplicity, any
corepresentations that are present here must be oftype I. Since the two levels are isolated
from the rest of the spectrum, we can construct the rank 2 spectral projection onto the
spectral subspace corresponding to both eigenvalues by contour integration of the resolvent
of h(X, δ):

P(X, δ) = 1

2π i

∫
γ

(z − h(X, δ))−1 dz

whereγ surrounds the two eigenvalues.
Without loss of generality, assume 0∈ Rn is an arbitrary generic point of0. Since the

resolvent ofh(X, δ) is C2, and we are studying generic situations,0 has a well defined
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tangent plane atX = 0. Choose a coordinate system in which theX2, X3, . . . Xn axes are
tangent to0 atX = 0 and theX1 axis is perpendicular to0 atX = 0.

Choose{ψ1, ψ2} to be an orthonormal basis of the range ofP(0, 0). Define

ψ1(X, δ) = P(X, δ)ψ1

‖P(X, δ)ψ1‖
and letP1(X, δ) be the orthogonal projection ontoψ1(X, δ). The projectionsP(X, δ) and
P1(X, δ) commute with one another. Define

ψ2(X, δ) = (1− P1(X, δ))P (X, δ)ψ2

‖(1− P1(X, δ))P (X, δ)ψ2‖ .

Then {ψ1(X, δ), ψ2(X, δ)} is an orthonormal basis for the range ofP(X, δ) for small ‖X‖
and smallδ.

The range ofP(X, δ) is an invariant subspace forh(X, δ), and in the basis{ψ1(X, δ),
ψ2(X, δ)}, the restriction ofh(X, δ) to the range ofP(X, δ) is given by a 2× 2 matrix
h1(X, δ). We define

h2(X, δ) = h1(X, δ)− 1
2(EA(X, δ)+ EB(X, δ))I

whereI is the 2× 2 identity matrix. Thenh2(X, δ) is a 2× 2 traceless self-adjoint matrix-
valued function. SinceEA(0, 0) = EB(0, 0), h2(0, 0) is the zero matrix.

By the assumed smoothness of the resolvent ofh(X, δ), h2(X, δ) is C2 in X andδ for
‖X‖ andδ small. Thus, for small‖X‖ andδ, by first-order Taylor series,

h2(X, δ) = BX1+ Cδ +O(X2+ δ2)

whereB and C are 2× 2 traceless self-adjoint matrices. By the spectral theorem, we
can make anX and δ independent change of basis so thatB is diagonal. Since we are
studying generic avoided crossings, we assumeB is non-zero. Thus, in the new basis,
{φ1(X, δ), φ2(X, δ)}, h2(X, δ) is represented by

h3(X, δ) =
(
b1 0
0 −b1

)
X1+

(
b2 c2+ id2

c2− id2 −b2

)
δ +O(X2+ δ2).

By replacingφ2(X, δ) by eiθφ2(X, δ) for appropriateθ , we can arrange for the imaginary
terms in the above expression to vanish. Thus, in a final basis,h2(X, δ) is represented by

h4(X, δ) =
(
b1X1+ b2δ c̃2δ

c̃2δ −b1X1− b2δ

)
+O(X2+ δ2). (1)

From this representation, we see that

EA(X, δ)− EB(X, δ) = 2
√
(b1X1+ b2δ)2+ (c̃2δ)2+O(X2+ δ2)

and thath1(X, δ) minus half its trace (which depends smoothly onX and δ) is unitarily
equivalent to the normal formh4(X, δ).

3. Type 2 avoided crossings

Type 2 avoided crossings are very similar to type 1, except that the eigenvalues are
degenerate. Type 2 avoided crossings are characterized by having codimension(0) = 1
and the multiplicity ofEA(X, δ) andEB(X, δ) being 2.
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Type 2 avoided crossings may occur when the eigenvalues are associated withtype II
or type III corepresentations. We begin our discussion with the simpler case of atype III
corepresentation. In that case, we construct the rank 4 projectionP(X, δ) onto the spectral
subspace forh(X, δ) that corresponds to both eigenvalues by contour integration as for
type 1 avoided crossings. The corepresentation decomposes asU = D ⊕ C, whereC and
D are inequivalent representations ofH . Assume 0∈ Rn is an arbitrary point of0, and
choose coordinatesX1, X2, . . . , Xn as in the discussion of type 1 avoided crossings.

Arbitrarily choose two orthonormal vectorsψ1 andψ2 that lie in the range ofP(0, 0)
and in the carrier subspace for theD representation of the subgroupH of the symmetry
groupG. Define

ψ1(X, δ) = P(X, δ)ψ1

‖P(X, δ)ψ1‖
and letP1(X, δ) be the orthogonal projection ontoψ1(X, δ). Then define

ψ2(X, δ) = (1− P1(X, δ))P (X, δ)ψ2

‖(1− P1(X, δ))P (X, δ)ψ2‖ .

For small |X| and δ, these two vectors form an orthonormal basis for the intersection of
the range ofP(X, δ) and the carrier subspace for theD representation ofH . We then let
ψ3(X, δ) = Kψ1(X, δ) andψ4(X, δ) = Kψ2(X, δ), whereK is the anti-unitary operator
mentioned in the description oftype III corepresentations. These last two vectors form an
orthonormal basis for the intersection of the range ofP(X, δ) and the carrier subspace for
the C representation ofH . The four vectors form an orthonormal basis for the range of
P(X, δ).

In this basis, the restriction of

h1(X, δ) = h(X, δ)− 1
4(EA(X, δ)+ EB(X, δ))I

to the range ofP(X, δ) is represented by a self-adjoint traceless 4×4 matrix-valued function
h2(X, δ) whose entries areC2 functions that vanish for(X, δ) = (0, 0). Sinceh(X, δ)
commutes with the projections onto the carrier subspaces for theC andD representations
and with the action ofK, h2(X, δ) commutes with

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and 

0 0 eiω 0
0 0 0 eiω

1 0 0 0
0 1 0 0

 · (conjugation)

whereD(K2) is a multiplication by eiω. It follows thath2(X, δ) must have the form
α(X, δ) β(X, δ)+ iγ (X, δ) 0 0

β(X, δ)− iγ (X, δ) −α(X, δ) 0 0
0 0 α(X, δ) β(X, δ)− iγ (X, δ)
0 0 β(X, δ)+ iγ (X, δ) −α(X, δ)

 .
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We expandh2(X, δ) in its first order Taylor series

h2(X, δ) = BX1+ Cδ +O(X2+ δ2)

whereB and C are 4× 4 traceless self-adjoint matrices. By the spectral theorem, we
can make anX and δ independent change of basis so thatB is diagonal. Since we are
studying generic avoided crossings, we assumeB is non-zero. Thus, in the new basis,
{φ1(X, δ), φ2(X, δ), φ3(X, δ), φ4(X, δ)}, h2(X, δ) is represented by

h3(X, δ) =


b1 0 0 0
0 −b1 0 0
0 0 b1 0
0 0 0 −b1

X1+


b2 c2+ id2 0 0

c2− id2 −b2 0 0
0 0 b2 c2− id2

0 0 c2+ id2 −b2

 δ
+O(X2+ δ2).

By replacingφ2(X, δ) by eiθφ2(X, δ) andφ4(X, δ) by e−iθφ4(X, δ) for appropriateθ , we
can arrange for the imaginary terms in the above expression to vanish. Thus, in a final
basis,h2(X, δ) is represented by

h4(X, δ) =


b1X1+ b2δ c̃2δ 0 0

c̃2δ −b1X1− b2δ 0 0
0 0 b1X1+ b2δ c̃2δ

0 0 c̃2δ −b1X1− b2δ

+O(X2+ δ2).

(2)

From this representation, we see that

EA(X, δ)− EB(X, δ) = 2
√
(b1X1+ b2δ)2+ (c̃2δ)2+O(X2+ δ2)

and thath1(X, δ) minus a quarter its trace (which depends smoothly onX andδ) is unitarily
equivalent to the normal formh4(X, δ).

If the corepresentation istype II instead oftype III, the analysis is more complicated,
but ultimately leads to the same normal form (2).

When the corepresentation is oftype II, we choose a unit vectorψ1 in the range of
P(0, 0), and defineψ2 = Kψ1. Thenψ2 is a unit vector orthogonal toψ1. We chooseψ3

to be any unit vector in the range ofP(0, 0) that is orthogonal to bothψ1 andψ2, and let
ψ4 = Kψ3. The four vectors then constitute an orthonormal basis of the range ofP(0, 0).

We define

ψ1(X, δ) = P(X, δ)ψ1

‖P(X, δ)ψ1‖
and letψ2(X, δ) = Kψ1(X, δ). We letP1,2(X, δ) be the orthogonal projection ontoψ1(X, δ)

andψ2(X, δ), and define

ψ3(X, δ) = (1− P1,2(X, δ))P (X, δ)ψ3

‖(1− P1,2(X, δ))P (X, δ)ψ3‖ .

Finally, we letψ4(X, δ) = Kψ3(X, δ). For small |X| and δ, these four vectors form an
orthonormal basis for the range ofP(X, δ).

In this basis, the restriction of

h1(X, δ) = h(X, δ)− 1
4(EA(X, δ)+ EB(X, δ))
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to the range ofP(X, δ) is represented by a self-adjoint traceless 4×4 matrix-valued function
h5(X, δ) whose entries areC2 functions that vanish for(X, δ) = (0, 0). Sinceh(X, δ)
commutes with the action ofK, h5(X, δ) commutes with

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 · (conjugation).

It follows thath5(X, δ) must have the form
α(X, δ) 0 β(X, δ)+ iγ (X, δ) ε(X, δ)+ iζ(X, δ)

0 α(X, δ) −ε(X, δ)+ iζ(X, δ) β(X, δ)− iγ (X, δ)
β(X, δ)− iγ (X, δ) −ε(X, δ)− iζ(X, δ) −α(X, δ) 0
ε(X, δ)− iζ(X, δ) β(X, δ)+ iγ (X, δ) 0 −α(X, δ)

.
We expandh5(X, δ) in its first order Taylor series

h5(X, δ) = BX1+ Cδ +O(X2+ δ2)

whereB and C are 4× 4 traceless self-adjoint matrices. By the spectral theorem, we
can make anX and δ independent change of basis so thatB is diagonal. Since we are
studying generic avoided crossings, we assumeB is non-zero. Thus, in the new basis,
{φ1(X, δ), φ2(X, δ), φ3(X, δ), φ4(X, δ)}, h5(X, δ) is represented by

h6(X, δ) =


b1 0 0 0
0 b1 0 0
0 0 −b1 0
0 0 0 −b1

X1

+


b2 0 c2+ id2 e2+ if2

0 b2 −e2+ if2 c2− id2

c2− id2 −e2− if2 −b2 0
e2− if2 c2+ id2 0 −b2

 δ +O(X2+ δ2).

By analogy with the construction for type 1 avoided crossings, we now alter the basis
to force certain coeficients to vanish. Instead of multiplying some basis vectors by phases,
we apply a unitary operator in a two-dimensional subspace. We define a unitary operator
on C2 by

U = 1√
c2

2 + d2
2 + e2

2 + f 2
2

(
c2+ id2 e2+ if2

−e2+ if2 c2− id2

)
and replaceφ3(X, δ) andφ4(X, δ) by Uφ3(X, δ) andUφ4(X, δ), respectively. In the new
basis,h5(X, δ) is represented by

h7(X, δ) =


b1X1+ b2δ 0 c̃2δ 0

0 b1X1+ b2δ 0 c̃2δ

c̃2δ 0 −b1X1b2δ 0
0 c̃2δ 0 −b1X1− b2δ

+O(X2+ δ2).

Then, by interchanging the second and third basis vectors, we obtain a final basis in which
h5(X, δ) is represented by

h8(X, δ) =


b1X1+ b2δ c̃2δ 0 0

c̃2δ −b1X1− b2δ 0 0
0 0 b1X1+ b2δ c̃2δ

0 0 c̃2δ −b1X1− b2δ

+O(X2+ δ2)
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which has the same form as (2).
So, in either case, we see that

EA(X, δ)− EB(X, δ) = 2
√
(b1X1+ b2δ)2+ (c̃2δ)2+O(X2+ δ2)

and thath1(X, δ) minus a quarter of its trace (which depends smoothly onX and δ) is
unitarily equivalent to the normal form (2).

4. Type 3 avoided crossings

Type 3 avoided crossings are characterized by having codimension(0) = 2 and the
multiplicity of EA(X, δ) andEB(X, δ) being 1.

We claim that type 3 avoided crossings do not generically occur if the symmetry group
contains anti-unitary operators.

To prove this claim, suppose the symmetry group does contain anti-unitary operators,
and that the multiplicities of the eigenvalues are 1. Assume, without loss of generality
that 0∈ Rn is a generic point of0. Then the corepresentation must be oftype I, and the
level crossing ofh(X, δ) at (X, δ) = (0, 0) must be oftype I in the classification given
in [1, 2]. It follows [1, 2] that the restriction ofh(X, δ) to the spectral subspace associated
with EA(X, δ) andEB(X, δ) is unitarily equivalent to a real symmetric 2× 2 matrix(

α(X, δ)+ β(X, δ) γ (X, δ)

γ (X, δ) α(X, δ)− β(X, δ)
)

whose eigenvalues cross if and only ifβ(X, δ) = γ (X, δ) = 0. Generically the two gradients
∇X|(X,δ)=(0,0)β(X, δ) and∇X|(X,δ)=(0,0)γ (X, δ) are non-zero. IfX is restricted to a planeP
that is not perpendicular to either of these gradients, then we can apply the implicit-function
theorem to conclude that for smallδ, there is a uniqueX(δ) near the origin onP, that
satisfiesβ(X(δ), δ) = γ (X(δ), δ) = 0. Thus, for smallδ, the perturbed levelsEA(X, δ)
andEB(X, δ) still cross one another, and an avoided crossing does not arise. This proves
the claim.

Without loss of generality, assume that 0∈ Rn is a generic point of0. Since0 has
a well defined tangent plane atX = 0, we can choose an orthogonal coordinate system
in which theX1 andX2 coordinate axes are perpendicular to0 and theX3, X4, . . . , Xn
axes are tangent to0. We further assume that theX1-axis is in the distinguished direction
perpendicular to0 at the origin, as mentioned in the introduction.

We chooseψ1(X, δ) andψ2(X, δ), and defineh2(X, δ) as in our discussion of type 1
avoided crossings. We then expandh2(X, δ) in its first-order Taylor series:

h2(X, δ) = BX1+ CX2+Dδ +O(X2+ δ2)

whereB, C, andD are traceless 2× 2 self-adjoint matrices. By performing anX and δ
independent change of basis fromψ1(X, δ) andψ2(X, δ) to someφ1(X, δ) andφ2(X, δ),
we may forceB to be diagonal. In the new basis,h2(X, δ) is represented by

h3(X, δ) =
(

b1X1+ b2X2+ b3δ c2X2+ id2X2+ c3δ + id3δ

c2X2− id2X2+ c3δ − id3δ −b1X1− b2X2− b3δ

)
+O(X2+ δ2).

We chooseθ so thatc2+ id2 = c̃2eiθ , wherec̃2 is real and positive. We then replaceφ2(X, δ)

by eiθφ2(X, δ). In the resulting basis,h2(X, δ) is represented by

h4(X, δ) =
(
b1X1+ b2X2+ b3δ c̃2X2+ c̃3δ + id̃3δ

c̃2X2+ c̃3δ − id̃3δ −b1X1− b2X2− b3δ

)
+O(X2+ δ2) (3)



Avoided crossings 377

wherec̃3+ id̃3 = e−iθ (c2+ id2). From this we see that

EA(X, δ)− EB(X, δ) = 2
√
(b1X1+ b2X2+ b3δ)2+ (c̃2X2+ c̃3δ)2+ (d̃3δ)2+O(X2+ δ2)

and thath1(X, δ) minus half of its trace (which depends smoothly onX andδ) is unitarily
equivalent to the normal form (3).

5. Type 4 avoided crossings

Type 4 avoided crossings are characterized by having codimension(0) = 2 and the
multiplicity of EA(X, δ) andEB(X, δ) being 2.

In this situation, our minimal multiplicity assumption dictates that the symmetry group
G contains anti-unitary operators, and that the corepresentation for these eigenvalues be of
type II or type III. In either case, we choose a coordinate system forX as in our discussion
of type 3 avoided crossings.

If EA(X, δ) andEB(X, δ) are associated with atype III corepresentation, we choose
basis vectors as in our discussion of type 2 avoided crossings. The resulting matrix
h2(X, δ) has the same form as in the discussion of type 2 avoided crossings. We
expand this matrix-valued function in its first-order Taylor series and diagonalize the
matrix that is the coefficient ofX1. At that point h2(X, δ) is represented in a basis
{φ1(X, δ), φ2(X, δ), φ3(X, δ), φ4(X, δ)} by the matrix

h3(X, δ) =
(

b1X1 + b2X2 + b3δ c2X2 + id2X2 + c3δ + id3δ 0 0
c2X2 − id2X2 + c3δ − id3δ −b1X1 − b2X2 − b3δ 0 0

0 0 b1X1 + b2X2 + b3δ c2X2 − id2X2 + c3δ − id3δ
0 0 c2X2 + id2X2 + c3δ + id3δ −b1X1 − b2X2 − b3δ

)
+O(X2+ δ2).

We then chooseθ as in the discussion of type 3 avoided crossings and replaceφ2(X, δ) by
eiθφ2(X, δ) andφ4(X, δ) by e−iθφ4(X, δ). In this final basis,h2(X, δ) is represented by the
normal form

h4(X, δ) =
( b1X1 + b2X2 + b3δ c̃2X2 + c̃3δ + id̃3δ 0 0

c̃2X2 + c̃3δ − id̃3δ −b1X1 − b2X2 − b3δ 0 0

0 0 b1X1 + b2X2 + b3δ c̃2X2 + c̃3δ − id̃3δ

0 0 c̃2X2 + c̃3δ + id̃3δ −b1X1 − b2X2 − b3δ

)
+O(X2+ δ2) (4)

wherec̃3+ id̃3 = e−iθ (c2+ id2). As in the case of a type 3 avoided crossing,

EA(X, δ)− EB(X, δ) = 2
√
(b1X1+ b2X2+ b3δ)2+ (c̃2X2+ c̃3δ)2+ (d̃3δ)2+O(X2+ δ2).

When the corepresentation is oftype II, the situation is more complicated. We
again mimic the discussion of type 2 avoided crossings to choose an appropriate basis;
we expand in first-order Taylor series; and we diagonalize the matrix that is theX1

coefficient in that Taylor series. We then find thath2(X, δ) is represented in a basis
{φ1(X, δ), φ2(X, δ), φ3(X, δ), φ4(X, δ)} by the matrixh5(X, δ) that is given below.

h5(X, δ) =
(

b1X1 + b2X2 + b3δ 0 (c2 + id2)X2 + (c3 + id3)δ (e2 + if2)X2 + (e3 + if3)δ
0 b1X1 + b2X2 + b3δ (−e2 + if2)X2 + (−e3 + if3)δ (c2 − id2)X2 + (c3 − id3)δ

(c2 − id2)X2 + (c3 − id3)δ (−e2 − if2)X2 + (−e3 − if3)δ −b1X1 − b2X2 − b3δ 0
(e2 − if2)X2 + (e3 − if3)δ (c2 + id2)X2 + (c3 + id3)δ 0 −b1X1 − b2X2 − b3δ

)
+O(X2+ δ2).

We next make a similarity transformation of the form

h6(X, δ) =
 U1

0 0
0 0

0 0
0 0

U2

h5(X, δ)

 U1
0 0
0 0

0 0
0 0

U2

−1
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whereU1 andU2 are certain constant 2× 2 unitary matrices. There is a well known 2-to-
1 Lie-group homomorphism [6] fromSU(2) × SU(2) onto SO(4), (U1, U2) 7−→ OU1,U2,
which satisfies(

c̃ + id̃ ẽ + if̃
−ẽ + if̃ c̃ − id̃

)
= U1

(
c + id e + if
−e + if c − id

)
U−1

2

if and only if

( c̃ d̃ ẽ f̃ ) = ( c d e f )OU1,U2.

Since the homomorphism is ontoSO(4), we can chooseU1 andU2 so that the transpose
of OU1,U2 satisfies

OT
U1,U2


c2 c3

d2 d3

e2 e3

f2 f3

 =

c̃2 c̃3

0 d̃3

0 0
0 0


with c̃2 > 0 andd̃3 > 0. (Since all rotations arise, we simply choose one which maps the
first vector into the positiveX1 direction and the second vector into theX1–X2 plane with
positive second component.) By doing this, we see thath2(X, δ) is represented by

h6(X, δ) =
( b1X1 + b2X2 + b3δ 0 c̃2X2 + c̃3δ + id̃3δ 0

0 b1X1 + b2X2 + b3δ 0 c̃2X2 + c̃3δ − id̃3δ

c̃2X2 + c̃3δ − id̃3δ 0 −b1X1 − b2X2 − b3δ

0 c̃2X2 + c̃3δ + id̃3δ 0 −b1X1 − b2X2 − b3δ

)
+O(X2+ δ2).

Then, by interchanging the second and third basis vectors, we again obtain the normal-form
matrix h4(X, δ) given by (4), and

EA(X, δ)− EB(X, δ) = 2
√
(b1X1+ b2X2+ b3δ)2+ (c̃2X2+ c̃3δ)2+ (d̃3δ)2

+O(X2+ δ2).

6. Type 5 avoided crossings

Type 5 avoided crossings are characterized by having codimension(0) = 3.
We claim that when the codimension(0) > 3, generic avoided crossings cannot arise

unless theG contains anti-unitary operators and the corepresentation for the eigenvalues is
of type II. This forces the minimal multiplicity of the eigenvalues to be 2.

To prove this claim, we assume that 0∈ Rn is a generic point of0 and examine several
cases:

Case 1.Suppose the corepresentation forEA(X, δ) andEB(X, δ) is of type I. In this case
we repeat the implicit-function theorem argument from the beginning of our discussion of
type 3 avoided crossings to see that crossings are stable under generic perturbations, and
that no avoided crossing arises.

Case 2.SupposeG contains no anti-unitary operators. Then the level crossing ofh(X, δ)

at (X, δ) = (0, 0) must be of type B in the classification given in [1, 2]. Furthermore, the
restriction ofh(X, δ) to the spectral subspace associated withEA(X, δ) andEB(X, δ) is
unitarily equivalent to a 2× 2 matrix(

α(X, δ)+ β(X, δ) γ (X, δ)+ iω(X, δ)
γ (X, δ)− iω(X, δ) α(X, δ)− β(X, δ)

)
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whose eigenvalues cross if and only ifβ(X, δ) = γ (X, δ) = ω(X, δ) = 0. Generically
the three gradients∇X|(X,δ)=(0,0)β(X, δ), ∇X|(X,δ)=(0,0)γ (X, δ), and∇X|(X,δ)=(0,0)ω(X, δ) are
non-zero. IfX is restricted to a three-dimensional subspaceS that is not perpendicular to
any of these gradients, then we can apply the implicit-function theorem to conclude that for
smallδ, there is a uniqueX(δ) near the origin inS, that satisfiesβ(X(δ), δ) = γ (X(δ), δ) =
ω(X(δ), δ) = 0. Thus, for smallδ, the perturbed levelsEA(X, δ) andEB(X, δ) still cross
one another, and an avoided crossing does not arise.

Case 3.Suppose the corepresentation forEA(X, δ) andEB(X, δ) is of type III. Then the
level crossing ofh(X, δ) at (X, δ) = (0, 0) must be of type K in the classification given
in [1, 2]. Furthermore, the restriction ofh(X, δ) to the spectral subspace associated with
EA(X, δ) andEB(X, δ) is unitarily equivalent to a 4× 4 matrix
α(X, δ)+ β(X, δ) γ (X, δ)+ iω(X, δ) 0 0
γ (X, δ)− iω(X, δ) α(X, δ)− β(X, δ) 0 0

0 0 α(X, δ)+ β(X, δ) γ (X, δ)− iω(X, δ)
0 0 γ (X, δ)+ iω(X, δ) α(X, δ)− β(X, δ)


whose eigenvalues cross if and only ifβ(X, δ) = γ (X, δ) = ω(X, δ) = 0. The implicit-
function theorem argument from case 2 now shows that generic crossings are stable and
that no avoided crossing arises.

Since the only other possibility is thatG contains anti-unitary operators and the
corepresentation for the eigenvalues is oftype II, this proves our claim.

The analysis of type 5 avoided crossings is very similar to the analysis of type 4 avoided
crossings when the relevant corepresentation ofG is of type II. Without loss of generality,
assume that 0∈ Rn is a generic point of0. Since0 has a well defined tangent plane
at X = 0, we can choose an orthogonal coordinate system in which theX1, X2, andX3

coordinate axes are perpendicular to0 and theX4, X5, . . . , Xn axes are tangent to0. We
further assume that theX1 is the distinguished direction perpendicular to0 at the origin,
as mentioned in the introduction.

SinceEA(X, δ) andEB(X, δ) are associated with atype II corepresentation, we choose
basis vectors as in our discussion of type 2 avoided crossings. The resulting matrix
h2(X, δ) has the same form as in the discussion of type 2 avoided crossings. We
expand this matrix-valued function in its first-order Taylor series and diagonalize the
matrix that is the coefficient ofX1. At that point h2(X, δ) is represented in a basis
{φ1(X, δ), φ2(X, δ), φ3(X, δ), φ4(X, δ)} by the matrixh3(X, δ) given below.

h3(X, δ)

=



[ 3∑
j=1

bj Xj

]
+ b4δ 0

[ 3∑
j=2

(cj + idj )Xj

]
+ (c4 + id4)δ

[ 3∑
j=2

(ej + ifj )Xj

]
+ (e4 + if4)δ

0

[ 3∑
j=1

bj Xj

]
+ b4δ

[ 3∑
j=2

(−ej + ifj )Xj

]
+ (−e4 + if4)δ

[ 3∑
j=2

(cj − idj )Xj

]
+ (c4 − id4)δ

[ 3∑
j=2

(cj − idj )Xj

]
+ (c4 − id4)δ

[ 3∑
j=2

(−ej − ifj )Xj

]
+ (−e4 − if4)δ −

[ 3∑
j=1

bj Xj

]
− b4δ 0

[ 3∑
j=2

(ej − ifj )Xj

]
+ (e4 − if4)δ

[ 3∑
j=2

(cj + idj )Xj

]
+ (c4 + id4)δ 0 −

[ 3∑
j=1

bj Xj

]
− b4δ


+O(X2+ δ2).

We again make a similarity transformation of the form

h4(X, δ) =
 U1

0 0
0 0

0 0
0 0

U2

h3(X, δ)

 U1
0 0
0 0

0 0
0 0

U2

−1
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whereU1 andU2 are certain constant 2× 2 unitary matrices. We use the same Lie-group
homomorphism as in the type 4 avoided-crossing case, but this time chooseOU1,U2 ∈ SO(4)
so that

OT
U1,U2


c2 c3 c4

d2 d3 d4

e2 e3 e4

f2 f3 f4

 =

c̃2 c̃3 c̃4

0 d̃3 d̃4

0 0 ẽ4

0 0 0


with c̃2 > 0, d̃3 > 0, andẽ4 > 0. By doing this, we see thath2(X, δ) is represented by the
matrix h4(X, δ) given below.

h4(X, δ)

=
[ b1X1 + b2X2 + b3X3 + b4δ 0 c̃2X2 + (c̃3 + id̃3)X3 + (c̃4 + id̃4)δ ẽ4δ

0 b1X1 + b2X2 + b3X3 + b4δ −ẽ4δ c̃2X2 + (c̃3 − id̃3)X3 + (c̃4 − id̃4)δ

c̃2X2 + (c̃3 − id̃3)X3 + (c̃4 − id̃4)δ −ẽ4δ −b1X1 − b2X2 − b3X3 − b4δ 0

ẽ4δ c̃2X2 + (c̃3 + id̃3)X3 + (c̃4 + id̃4)δ 0 −b1X1 − b2X2 − b3X3 − b4δ

]
+O(X2+ δ2).

In the above expression we can further arrange forc̃3 = 0 by rotating theX2 andX3

coordinate axes (recall that we assume theX1 axis points in a distinguished direction). To

see that this can always be done, note thatc̃3 = 0 is equivalent to having


c̃2

0
0
0

 orthogonal

to


c̃3

d̃3

0
0

. This, in turn, is equivalent to having


c2

d2

e2

f2

 orthogonal to


c3

d3

e3

f3

.

Rotations of theX2 andX3 axes have the effect of multiplying

Z =


c2 c3

d2 d3

e2 e3

f2 f3


on the right by a rotation(

cosθ − sinθ
sinθ cosθ

)
.

Thus, we need only show thatθ can be chosen so that

Z

(
cosθ
sinθ

)
is orthogonal toZ

(− sinθ
cosθ

)
.

However,ZTZ is a real symmetric 2×2 matrix, whose eigenvectors have the form

(
cosθ
sinθ

)
and

(− sinθ
cosθ

)
. One then easily computes that〈
Z

(
cosθ
sinθ

)
, Z

(− sinθ
cosθ

)〉
=
〈(

cosθ
sinθ

)
, ZTZ

(− sinθ
cosθ

)〉
= µ

〈(
cosθ
sinθ

)
,

(− sinθ
cosθ

)〉
= 0
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whereµ is an eigenvalue ofZTZ. For this choice ofθ , we have the desired orthogonality.
Thus, we have the final normal-form matrixh5(X, δ) given by equation (5).

h5(X, δ)

=
[ b1X1 + b2X2 + b3X3 + b4δ 0 c̃2X2 + id̃3X3 + (c̃4 + id̃4)δ ẽ4δ

0 b1X1 + b2X2 + b3X3 + b4δ −ẽ4δ c̃2X2 − id̃3X3 + (c̃4 − id̃4)δ

c̃2X2 − id̃3X3 + (c̃4 − id̃4)δ −ẽ4δ −b1X1 − b2X2 − b3X3 − b4δ 0

ẽ4δ c̃2X2 + id̃3X3 + (c̃4 + id̃4)δ 0 −b1X1 − b2X2 − b3X3 − b4δ

]
+O(X2+ δ2). (5)

From this expression, one sees that the difference between the eigenvalues is

EA(X, δ)− EB(X, δ)
= 2

√
(b1X1+ b2X2+ b3X3+ b4δ)2+ (c̃2X2+ c̃4δ)2+ (d̃3X3+ d̃4δ)2+ (ẽ4δ)2

+O(X2+ δ2).

7. Type 6 avoided crossings

Type 6 avoided crossings are characterized by having codimension(0) = 4. As in the type 5
situation, the symmetry groupGmust contain anti-unitary operators and the corepresentation
for the eigenvalues must be oftype II. The minimal multiplicity of the eigenvalues is 2.

The analysis of this situation is completely analogous to the type 5 avoided-crossing
case. The only changes result from our having four relevantX coordinates instead of three.
In this situation, the matrixh3(X, δ) is presented below.

h3(X, δ)

=



[ 4∑
j=1

bj Xj

]
+ b5δ 0

[ 4∑
j=2

(cj + idj )Xj

]
+ (c5 + id5)δ

[ 4∑
j=2

(ej + ifj )Xj

]
+ (e5 + if5)δ

0

[ 4∑
j=1

bj Xj

]
+ b5δ

[ 4∑
j=2

(−ej + ifj )Xj

]
+ (−e5 + if5)δ

[ 4∑
j=2

(cj − idj )Xj

]
+ (c5 − id5)δ

[ 4∑
j=2

(cj − idj )Xj

]
+ (c5 − id5)δ

[ 4∑
j=2

(−ej − ifj )Xj

]
+ (−e5 − if5)δ −

[ 4∑
j=1

bj Xj

]
− b5δ 0

[ 4∑
j=2

(ej − ifj )Xj

]
+ (e5 − if5)δ

[ 4∑
j=2

(cj + idj )Xj

]
+ (c5 + id5)δ 0 −

[ 4∑
j=1

bj Xj

]
− b5δ


+O(X2+ δ2).

In analogy with the type 5 discussion, we may rotate theX2, X3, andX4 coordinate

axes in order to force the vectors


c2

d2

e2

f2

,


c3

d3

e3

f3

, and


c4

d4

e4

f4

 to be mutually perpendicular.

After doing so, we choose unitary matricesU1 andU2 so that

OT
U1,U2


c2 c3 c4 c5

d2 d3 d4 d5

e2 e3 e4 e5

f2 f3 f4 f5

 =

c̃2 c̃3 c̃4 c̃5

0 d̃3 d̃4 d̃5

0 0 ẽ4 ẽ5

0 0 0 f̃5

 .
Because of the mutual orthogonality arranged by the rotation of coordinate axes,c̃3, c̃4, and
d̃4 must also vanish.
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Thus, we obtain the normal form matrixh4(X, δ) in equation (6).

h4(X, δ) =



[ 4∑
j=1

bj Xj

]
+ b5δ 0 c̃2X2 + id̃3X3 + (c̃5 + id̃5)δ ẽ4X4 + (ẽ5 + if̃5)δ

0

[ 4∑
j=1

bj Xj

]
+ b5δ −ẽ4X4 + (−ẽ5 + if̃5)δ c̃2X2 − id̃3X3 + (c̃5 − id̃5)δ

c̃2X2 − id̃3X3 + (c̃5 − id̃5)δ −ẽ4X4 + (−ẽ5 − if̃5)δ −
[ 4∑
j=1

bj Xj

]
− b5δ 0

ẽ4X4 + (ẽ5 − if̃5)δ c̃2X2 + id̃3X3 + (c̃5 + id̃5)δ 0 −
[ 4∑
j=1

bj Xj

]
− b5δ


+O(X2+ δ2). (6)

From this representation, we can then compute the difference between the eigenvalues:

EA(X, δ)− EB(X, δ) = 2

{([ 4∑
j=1

bjXj

]
+ b5δ

)2

+ (c̃2X2+ c̃5δ)
2+ (d̃3X3+ d̃5δ)

2

+(ẽ4X4+ e5δ)
2+ (f̃5δ)

2

}1/2

+O(X2+ δ2).

8. Completion of the classification

So far we have classified all possible generic, minimal multiplicity avoided crossings that
have codimension(0) 6 4. We now conclude our classification theory by showing that no
generic, minimal multiplicity avoided crossings can occur when codimension(0) > 5.

Assume codimension(0) > 5. As argued in the type 5 situation, the symmetry group
G must contain anti-unitary operators and the corepresentation for the eigenvalues must
be of type II. Under these circumstances, the level crossing ofh(X, δ) must be of typeJ
in the classification given in [1, 2]. Furthermore, the restriction ofh(X, δ) to the spectral
subspace associated withEA(X, δ) andEB(X, δ) is unitarily equivalent to a 4× 4 matrix
that is an(X, δ)-dependent multiple of the identity plus a matrix whose entries are linear
combinations of five real-valued functions ofX andδ. EA(X, δ) = EB(X, δ) if and only if
all five of these functions simultaneously vanish.

We now mimic our earlier implicit-function theorem arguments to see that on generic
five-dimensional subspaces through any generic point of0, there are pointsX(δ) near0
for small δ, such that these five functions simultaneously vanish at(X(δ), δ).

Thus, when codimension(0) > 5, generic, minimal multiplicity level crossings are
stable under generic perturbations and do not give rise to avoided crossings.

9. Concluding remark

One might wonder if it is possible to simplify our normal-form matrices further by somehow
forcing additional parameters to vanish. To see that this cannot be done, one needs only
count the number of independent parameters that describe each type of avoided crossing
and see that it is the same as the number of parameters in our normal forms.

In type 1 avoided crossings, for example, one parameter is the minimum eigenvalue
gap divided byδ. A second independent parameter is the scaling factor for the leading-
order dependence onδ of the location inX of closest approach of the eigenvalues. A third
independent parameter is a scaling factor for theX1 dependence of the eigenvalues. So, the
normal form cannot contain fewer than three parameters. Our form containsb1, b2, andc̃2.
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Similar counting can be done for the other types of avoided crossings. A listing of
independent parameters can be obtained by considering: (1) the number of parameters to
specify theX1 scale factor and the location of the minimum eigenvalue gap, (2) rotations of
principal axes of the Hessianat the minimum eigenvalue gap, (3) magnitudes of the Hessian
eigenvalues, and (4) the minimum gap divided byδ. In the type 5 and 6 situations, we
reduced the number of parameters by 1 and 3, respectively, by rotating certainX axes. In
each case, we obtain the number of parameters that appear in our normal forms.

For type 6 avoided crossings, one obtains:
4 for theX1 scale factor and location of the minimum,
6 for principal axis rotations of the Hessian (dimSO(4) = 6),
4 for Hessian eigenvalues,
1 for theδ scale parameter,
−3 for rotatingX2, X3, andX4 coordinates.
This yields 12 parameters, which is the number of free parameters in equation (6),

figure 6.
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